Beryllium Copper Shielding

Beryllium copper finger stock provides maximum spring properties for strength and fatigue resistance, plus excellent conductivity. It comes in a variety of finishes and mounting styles including *Clip-on, Stick-on, Snap-on and Special Mounting*. Beryllium copper’s unique material properties make it ideal for RFI/EMI shielding. Available with numerous plating options, BeCu has a high cycle time and also conforms to large gap variations.

Standard Products

TBA-PS offers the most complete line of standard BeCu shielding strips in the industry. Uncompressed heights of standard finger stock range from 0.76mm to 11.2mm, which will occupy gaps as low as 0.25mm. A line of standard connector gaskets is also available.

Custom Shielding

- Board Level Shielding
- Connector Gaskets

Semi-standard and custom designed shielding is offered for special applications such as board level shielding and connector gaskets. From high volume requirements using progressive dies, to prototype and low quantities utilising phototetch fabrication, TBA-PS can be your source for custom beryllium copper shielding.

Use BeCu Because . . .

- Excellent spring qualities
- Longevity
- Low closing force
- Cost effective
- Numerous plating options
- Conforms to large gap unevenness
- Attenuation exceeding 100 db for most styles

TBA100

Sales 01706 647718
Table of Contents

- Material Specification and General Information ... 2–5
- D-Sub Miniature Connector Gaskets ... 6
- Pressure Sensitive Mounting (Soft Fingers, No Snag Fingers, Panel Gaskets) 7–10
- Low Profile & Hook-On Gaskets ... 11–12
- Snap-on Mountings (Slot Mount, Track, Omni) .. 13–17
- Clip-on Mounting (Twisted Contacts, No Snag Fingers, Cylindrical Radius Reverse Bend Contacts) 17–20
- Special Mounting (Reverse Bend, Spherical and Cylindrical Radius Contact Strip Gaskets) 21–24
- Contact Rings .. 25

How to Order

- Each profile has its own unique number.
- Strips may be supplied as a standard length or custom cut to any length, provided that length is a multiple of a full finger.
- The fingerstock is normally supplied as clean and bright finish, other plating options are available, and designated with a part number suffix.
- Clip-On Gaskets may be supplied with a retaining D-Lance, and designated with a suffix L.
- Clip on gaskets may have different flange thickness, designated by suffix A, B, C etc.
- Low force compression options can be supplied designated by the prefix LC.

Examples

- ECP 645 (pressure sensitive soft finger).
- ECP 645/100mm (do cut to 100mm).
- ECP 645/02 (clean + bright).
- ECP 645/08 (tin plated).
- ECP 643/L/08 (lanced + tin plated).
- ECP 672A/L (Flange thickness 1.17mm with lances).
- LC/ECP 615 (produced in 0.05mm strip instead of 0.09mm thick material).

This catalogue relates to the material as supplied. The information contained herein is given in good faith, but no liability will be accepted by the Company in relation to same. The acquisition of additional information may necessitate revisions to parts or all of this Catalogue, and such information will be supplied as it becomes available.

As the company’s products are used for a multiplicity of purposes, and as the Company has no control over the method of their application or use, the Company excludes all conditions or warranties, express or implied, by statute or otherwise, as to their products and/or their fitness for any particular purpose.

Any technical co-operation between the Company and the Customer is given for the Customer’s assistance only and without liability on the part of the Company.

Sales 01706 647718

2
Material Specifications

Beryllium copper alloy 25 (CA172) is used in these applications for maximum spring properties of strength and fatigue resistance. Consult us for high temperature applications.

Chemical Composition

- Beryllium: 1.80–2.00%
- Cobalt plus nickel: 0.20% Min.
- Cobalt plus nickel plus iron: 0.6% Max.
- Copper: Balance

Physical Properties (heat treated)

- Electrical conductivity (% IACS): 22–25
- Modulus of elasticity (GPa): 127.5

Mechanical Properties (heat treated)

- Temper: 1⁄2HT
- Tensile strength (MPa): 1275 Min.
- Yield strength: 0.2% offset (MPa): 160 Min.

Manufacturing Tolerances (mm)

- Pitch: ±0.127
- Length: ±1.52
- Spring Height: ±0.51
- Cut Length: ±0.51

Finish

Finger Strips are stocked with a clean and bright finish. 02 finish standard

Other finishes available are:

- Solderable unplated: 01
- Clean and Bright (unsolderable): 02
- Gold: 03
- Silver: 04
- Tin Lead: 07
- Bright Tin: 08
- Bright Nickel: 09
- Zinc/Clear Chromate: 15
- Electroless Nickel: 18
- Other: 00

For other requirements and specifications of these finishes, consult us.

Electrochemical Compatibility

To avoid galvanic action between contacting metals refer to the following chart. Materials in adjacent groups may be safely used together. Choosing materials from within a single group in the table will provide the least corrosion due to galvanic action, when the materials are in contact for an extended period of time with appropriate protective finish.

<table>
<thead>
<tr>
<th>GROUPING OF METALS BY DECREASING GALVANIC ACTIVITY</th>
<th>ANODIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>Group 2</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Magnesium Alloys</td>
<td>Aluminium Alloys</td>
</tr>
<tr>
<td>Aluminium</td>
<td>Beryllium</td>
</tr>
<tr>
<td>Aluminium Alloys</td>
<td>Zinc & Zinc Plating</td>
</tr>
<tr>
<td>Beryllium</td>
<td>Chromium Plating</td>
</tr>
<tr>
<td>Zinc & Zinc Plating</td>
<td>Cadmium Plating</td>
</tr>
<tr>
<td>Chromium Plating</td>
<td>Carbon Steel</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
</tr>
<tr>
<td></td>
<td>Nickel & Nickel Plating</td>
</tr>
<tr>
<td></td>
<td>Tin & Tin Plating</td>
</tr>
<tr>
<td></td>
<td>Tin/Lead Solder</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CATHODIC</td>
<td></td>
</tr>
</tbody>
</table>
Attenuation Management

The purpose of shielding is to occupy and thereby shield the gap that exists between two adjoining surfaces. In order to be effective the gasket must be able to compensate for gaps which exist due to fabrication tolerances, misalignment of surfaces or irregular surfaces. Proper compression management is essential to ensure effective EMI shielding, for example at the maximum gap the gasket should be compressed in excess of 50% if needed. Attenuation exceeding 100dB for most styles can therefore be achievable.

Compression Management

Fingerstock can be compressed to a maximum deflection of 90% of the free height of the spring. It is generally recommended that a minimum of 25% compression is used to enable good electrical contact. The compression forces which result through this range are given in the performance data for each spring. Many of the springs are available in low compression material (designated LC in the data) and are used in applications where the closure force between the mating surfaces needs to be minimised.

Application Guide

- The **Installation Options** guide (see page 5) details how the springs can be fitted to the panelwork.
- Select a spring which can give around 50% compression in sealing the gap between the surfaces for optimum performance. The choice of the largest gasket to meet this gap filling requirement generally ensures that minimum compression forces are obtained, the use of larger gaskets also allows for greater tolerance latitude in the panelwork construction. Selection for minimum compression force also minimises the chance of panel deformation and the subsequent increased cost and use of stiffening members.
- The springs naturally act in a sliding or shear mode on compression. This wiping action ensures that good electrical continuity is maintained, the harder spring surface cleans any build up of oxidation corrosion or contamination on the mating surface.
- The springs should be mounted in a manner which avoids damage to the fingers. When the spring is used in a sliding or shear application ensure that the wiping action occurs towards the free end of the spring. Gaskets mounted onto panels are better mounted on the demountable item, and in the case of a biscuit-tin lid design, mounted inside the lid. In door sealing applications, mounting on the frame is recommended.
- The material and plating should be chosen to minimise galvanic action between the gasket and mating surfaces. Refer to the **Electrochemical Compatibility** chart (see page 3) to select the most appropriate finish.
Installation Options

Shielding strips are designed for a wide variety of application requirements, and can be supplied cut to length or full size in any of the following mounting configurations. Consult our engineering department for special modifications to suit your requirements.

Clip-on Mounting

Clip-on Mounting provides a reliable mechanical installation when there is an accessible mounting flange. Various flange thicknesses can be accommodated, and lances can be incorporated to enhance the holding force to the flange.

Clip-on Mounting Diagram

Stick-on Mounting

Pressure Sensitive Mounting provides double-sided pressure sensitive transfer tape for a fast, reliable installation. 3M Y-9469 transfer tape is standard and may be used at ambient temperatures from -55°C to 150°C. Apply only on a clean, oil-free surface, and allow a 24-hour cure time. Consult the factory for other adhesives.

Stick-on Mounting Diagram

Snap-on Mounting

Snap-on mounting is ideal for bi-directional applications, such as sliding drawers, doors and rack mounted assemblies.

Snap-on shielding is easily mounted by snapping it into parallel slots or over a mounting track. The mounting track, sold separately, can be installed by screws, rivets, spot welding, or pressure-sensitive, double-adhesive transfer tape. Order “T” Retaining Caps (page 14) or Plastic Rivets for end stops for the shielding (See Figure 1 below and page 15). Stops can also be incorporated in sheet metal. Hole diameter to mount track should be 3.18mm. Specify Plastic Rivets (PR45 or PR60 on page 15), if preferred.

Snap-on Mounting Diagram

OMNI Mounting

OMNI Mounting offers snap-on shielding preassembled on brass pads. OMNI shielding comes in lengths up to 406mm and can be mounted as individual pads or in strips cut to multiples of the pad length. Double adhesive transfer tape or plastic rivets are available mounting options. The OMNI shielding configuration is also an excellent choice for bidirectional applications.

OMNI Mounting Diagram

Plastic Rivets

Plastic rivets can be used to install Track, OMNI and as rivet stops to retain shielding on a track as shown in Figure 1 and in photo below. When used on a flange, the hole diameter for the rivet should be 3.18mm. Two rivets are available: PR45 and PR60 (page 15).

Plastic Rivets Diagram

“T” Retaining Caps

“T” Retaining Caps (page 14) can also be used to hold shielding on the Track.

“T” Retaining Caps Diagram

Special Mounting

Special Mounting provides for riveting, spot welding, soldering or use of double sided tape to mount shielding strip.
“D” Connector Gaskets

9DXX

9 Pin Connector

“D” CONNECTOR GASKET

<table>
<thead>
<tr>
<th>Part #</th>
<th>Material</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>9D10</td>
<td>Stainless Steel</td>
<td>11.2</td>
<td>5.6</td>
</tr>
<tr>
<td>9D12</td>
<td>Beryllium Copper</td>
<td>11.2</td>
<td>5.6</td>
</tr>
<tr>
<td>9D20</td>
<td>Stainless Steel</td>
<td>8.9</td>
<td>4.6</td>
</tr>
<tr>
<td>9D22</td>
<td>Beryllium Copper</td>
<td>8.9</td>
<td>4.6</td>
</tr>
</tbody>
</table>

15DXX

15 Pin Connector

“D” CONNECTOR GASKET

<table>
<thead>
<tr>
<th>Part #</th>
<th>Material</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>15D10</td>
<td>Stainless Steel</td>
<td>11.2</td>
<td>5.6</td>
</tr>
<tr>
<td>15D12</td>
<td>Beryllium Copper</td>
<td>11.2</td>
<td>5.6</td>
</tr>
<tr>
<td>15D20</td>
<td>Stainless Steel</td>
<td>8.9</td>
<td>4.6</td>
</tr>
<tr>
<td>15D22</td>
<td>Beryllium Copper</td>
<td>8.9</td>
<td>4.6</td>
</tr>
</tbody>
</table>

25DXX

25 Pin Connector

“D” CONNECTOR GASKET

<table>
<thead>
<tr>
<th>Part #</th>
<th>Material</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>25D10</td>
<td>Stainless Steel</td>
<td>11.2</td>
<td>5.6</td>
</tr>
<tr>
<td>25D12</td>
<td>Beryllium Copper</td>
<td>11.2</td>
<td>5.6</td>
</tr>
<tr>
<td>25D20</td>
<td>Stainless Steel</td>
<td>8.9</td>
<td>4.6</td>
</tr>
<tr>
<td>25D22</td>
<td>Beryllium Copper</td>
<td>8.9</td>
<td>4.6</td>
</tr>
</tbody>
</table>

37DXX

37 Pin Connector

“D” CONNECTOR GASKET

<table>
<thead>
<tr>
<th>Part #</th>
<th>Material</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>37D10</td>
<td>Stainless Steel</td>
<td>11.2</td>
<td>5.6</td>
</tr>
<tr>
<td>37D12</td>
<td>Beryllium Copper</td>
<td>11.2</td>
<td>5.6</td>
</tr>
<tr>
<td>37D20</td>
<td>Stainless Steel</td>
<td>8.9</td>
<td>4.6</td>
</tr>
<tr>
<td>37D22</td>
<td>Beryllium Copper</td>
<td>8.9</td>
<td>4.6</td>
</tr>
</tbody>
</table>

50DXX

50 Pin Connector

“D” CONNECTOR GASKET

<table>
<thead>
<tr>
<th>Part #</th>
<th>Material</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>50D10</td>
<td>Stainless Steel</td>
<td>14.0</td>
<td>7.1</td>
</tr>
<tr>
<td>50D12</td>
<td>Beryllium Copper</td>
<td>14.0</td>
<td>7.1</td>
</tr>
<tr>
<td>50D20</td>
<td>Stainless Steel</td>
<td>11.4</td>
<td>5.8</td>
</tr>
<tr>
<td>50D22</td>
<td>Beryllium Copper</td>
<td>11.4</td>
<td>5.8</td>
</tr>
</tbody>
</table>

HOW TO ORDER

To order “D” Connector Gaskets, simply supply the appropriate Item Number appended with the desired 2-digit Finish Code opposite

FINISH

- Clean and Bright: 02
- Gold: 03
- Silver: 04
- Tin Lead: 07
- Bright Tin: 08
- Bright Nickel: 09
- Zinc/Clear Chromate: 15
- Electroless Nickel: 18
- Other: 00

Sales 01706 647718

6
ECP 0647
SOFT FINGERS
Performance Range
25% Compression-50% Compression
Standard 0.13 Thk. 18 kg/m to 36 kg/m
Material: beryllium copper – .13 mm thick

ECP 0649
SOFT FINGERS
Performance Range
25% Compression-50% Compression
Standard 0.08 Thk. 37 kg/m to 132 kg/m
“LC” Style 0.05 Thk. 9 kg/m to 34 kg/m
Material: beryllium copper – .08 mm thick (LC style – .05 mm thick)

ECP 621
SOFT NO-SNAG FINGERS
Performance Range
25% Compression-50% Compression
Standard 0.05 Thk. * to *
Note: Consult factory for performance data.

ECP 0650 (ECP 0651 with 4.75mm pitch)
NO-SNAG FINGERS
Performance Range
25% Compression-50% Compression
Standard 0.089 Thk. 45 kg/m to 113 kg/m
Material: beryllium copper – .09 mm thick

ECP 0654 (ECP 0653 with 3.2mm pitch)
NO-SNAG FINGERS
Performance Range
25% Compression-50% Compression
Standard 0.089 Thk. 45 kg/m to 89 kg/m
Material: beryllium copper – .09 mm thick

ECP 0657 (ECP 0656 with 4.75mm pitch)
NO-SNAG FINGERS
Performance Range
25% Compression-50% Compression
Standard 0.089 Thk. 19 kg/m to 48 kg/m
Material: beryllium copper – .09 mm thick
ECP 0658
NO-SNAG FINGERS
Performance Range
25% Compression-50% Compression
Standard 0.089 Thk. 19 kg/m to 48 kg/m
Material: beryllium copper – 0.09 mm thick

ECP 0699
PANEL GASKETS
Performance Range
25% Compression-50% Compression
Standard 0.13 Thk. 22 kg/m to 103 kg/m
Material: beryllium copper – 0.13 mm thick

ECP 0625
PANEL GASKETS
Performance Range
25% Compression-50% Compression
Standard 0.08 Thk. 18 kg/m to 71 kg/m
“LC” Style 0.05 Thk. 4 kg/m to 15 kg/m
Material: beryllium copper – 0.08 mm thick (LC style – 0.05 mm thick)
(also available in 7.6 metre rolls)

ECP 0625/90°
PANEL GASKETS
Performance Range
25% Compression-50% Compression
Standard 0.08 Thk. 18 kg/m to 76 kg/m
Material: beryllium copper – 0.08 mm thick

ECP 0697
PANEL GASKETS
Performance Range
25% Compression-50% Compression
Standard 0.08 Thk. 13 kg/m to 33 kg/m
“LC” Style 0.05 Thk. 3 kg/m to 10 kg/m
Material: beryllium copper – 0.08 mm thick (LC style – 0.05 mm thick)
(also available in 7.6 metre rolls)

ECP 0697/90°
PANEL GASKETS
Performance Range
25% Compression-50% Compression
Standard 0.08 Thk. 13 kg/m to 33 kg/m
Material: beryllium copper – 0.08 mm thick

Pressure Sensitive Mounting
ECP 0698
PANEL GASKETS

Performance Range

<table>
<thead>
<tr>
<th>Performance Range</th>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.08 Thk.</td>
<td>28 kg/m to 57 kg/m</td>
</tr>
</tbody>
</table>

Material: beryllium copper – .08 mm thick

(available in 7.6 metre rolls)

ECP 0627
PANEL GASKETS

Performance Range

<table>
<thead>
<tr>
<th>Performance Range</th>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.08 Thk.</td>
<td>7 kg/m to 16 kg/m</td>
</tr>
</tbody>
</table>

Material: beryllium copper – .08 mm thick

(available in 7.6 metre rolls)

ECP 0623
PANEL GASKETS

Performance Range

<table>
<thead>
<tr>
<th>Performance Range</th>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.10 Thk.</td>
<td>21 kg/m to 31 kg/m</td>
</tr>
</tbody>
</table>

Material: beryllium copper – .10 mm thick

(available in 7.6 metre rolls)
Hook-on gasket example

Ideal shielding for Telecommunications and Other Rack Modules

- Leading edge hooks over flange for full protection.
- Self-locating, secure installation.
- Low closing force, low profile.
- Bi-directional.
- Adhesive mounting.
- Beryllium copper.
- 100db attenuation.
- 360° no-snag.
- Durable.

Installation Guide

The leading edge of the gasket hooks over the mounting flange for full protection. The opposing side is then attached with double-sided pressure sensitive transfer tape for a fast, reliable installation.

ECP 630

NO-SNAG FINGERS

Performance Range

<table>
<thead>
<tr>
<th>Standard 0.05 mm</th>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 kg/m to 30 kg/m</td>
<td></td>
</tr>
</tbody>
</table>

* Note: Consult factory for performance data.
ECP 632
NO-SNAG FINGERS
Performance Range
25% Compression-50% Compression
Standard 0.089 Thk. “LC” Style 0.069 Thk.
15 kg/m to 28 kg/m
9 kg/m to 24 kg/m
* Note: Consult factory for performance data.

ECP 636
NO-SNAG FINGERS
Performance Range
25% Compression-50% Compression
Standard 0.089 Thk. “LC” Style 0.069 Thk.
12 kg/m to 23 kg/m
8 kg/m to 13 kg/m
* Note: Consult factory for performance data.

ECP 632HO
NO-SNAG FINGERS HOOK ON
Performance Range
25% Compression-50% Compression
Standard 0.09 Thk. “LC” Style 0.07 Thk.
17 kg/m to 37 kg/m
9 kg/m to 24 kg/m
* Note: Consult factory for performance data.

ECP 636HO
NO-SNAG FINGERS HOOK ON
Performance Range
25% Compression-50% Compression
Standard 0.09 Thk. “LC” Style 0.07 Thk.
12 kg/m to 23 kg/m
8 kg/m to 13 kg/m
* Note: Consult factory for performance data.

ECP 634
LOW PROFILE CLIP ON
Performance Range
25% Compression-50% Compression
Standard 0.09 Thk. “LC” Style 0.07 Thk.
* to *
* to *
* *
* Note: Consult factory for performance data.

ECP 638
LOW PROFILE CLIP ON
Performance Range
25% Compression-50% Compression
Standard 0.09 Thk. “LC” Style 0.07 Thk.
* to *
* to *
* *
* Note: Consult factory for performance data.
Snap-on shielding is easily mounted by snapping it either into parallel slots or over a mounting track. The mounting track can be installed by screws, rivets or spot welding. Where needed, “T” Retaining Caps hold the shielding strips on the track. Snap-on shielding features a no-snag design and provides secure mechanical fastening to insure long life for frequently used cabinet doors and panels.

Available in a wide range of plating options, the Snap-on Series is ideal for any bi-directional application, such as sliding drawers, doors and rack mounted assemblies. It comes in lengths up to 406mm and various widths.

The Snap-on Series provides the security of mechanical fastening and the performance of top-quality Beryllium Copper shield at a reasonable price.

SLOT MOUNTING
ECP 0610

SYMMETRICAL

Performance Range

<table>
<thead>
<tr>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.05 mm</td>
</tr>
<tr>
<td>14 kg/m to 27 kg/m</td>
</tr>
</tbody>
</table>

Note: Consult factory for performance data.

ECP 0612

SYMMETRICAL

Performance Range

<table>
<thead>
<tr>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.089 Thk.</td>
</tr>
<tr>
<td>43 kg/m to 109 kg/m</td>
</tr>
<tr>
<td>“LC” Style 0.05 Thk.</td>
</tr>
<tr>
<td>13 kg/m to 42 kg/m</td>
</tr>
</tbody>
</table>

Material: beryllium copper – .09 mm thick (LC style – .05 mm thick)

ECP 0613

SYMMETRICAL

Performance Range

<table>
<thead>
<tr>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.05 Thk.</td>
</tr>
<tr>
<td>13 kg/m to 25 kg/m</td>
</tr>
</tbody>
</table>

Material: beryllium copper – .05 mm thick

ECP 0614

SYMMETRICAL

Performance Range

<table>
<thead>
<tr>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.13 Thk.</td>
</tr>
<tr>
<td>65 kg/m to 149 kg/m</td>
</tr>
<tr>
<td>“LC” Style 0.08 Thk.</td>
</tr>
<tr>
<td>6 kg/m to 10 kg/m</td>
</tr>
</tbody>
</table>

Material: beryllium copper – .13 mm thick (LC style – .08 mm thick)

ECP 0615

SYMMETRICAL

Performance Range

<table>
<thead>
<tr>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.089 Thk.</td>
</tr>
<tr>
<td>18 kg/m to 40 kg/m</td>
</tr>
<tr>
<td>“LC” Style 0.05 Thk.</td>
</tr>
<tr>
<td>4 kg/m to 12 kg/m</td>
</tr>
</tbody>
</table>

Material: beryllium copper – .09 mm thick (LC style – .05 mm thick)

ECP 0616

SYMMETRICAL

Performance Range

<table>
<thead>
<tr>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.10 Thk.</td>
</tr>
<tr>
<td>25 kg/m to 51 kg/m</td>
</tr>
<tr>
<td>“LC” Style 0.08 Thk.</td>
</tr>
<tr>
<td>6 kg/m to 9 kg/m</td>
</tr>
</tbody>
</table>

Material: beryllium copper – .10 mm thick (LC style – .08 mm thick)
Track Mounting

TR32
(FOR ECP 612)
Track sold separately.
Burr side of mounting hole should be opposite rivet entry side.
Material: Stainless Steel.
Finish: Bright.

TR37A or B or C
(FOR ECP 613)
Track sold separately.
Burr side of mounting hole should be opposite rivet entry side.
Material: Brass.
Finish: Bright.

TR60A or B or C
(FOR ECP 615)
Track sold separately.
Burr side of mounting hole should be opposite rivet entry side.
Material: Brass.
Finish: Bright.

TR80A or B or C
(FOR ECP 0616)
Track sold separately.
Burr side of mounting hole should be opposite rivet entry side.
Material: Brass.
Finish: Bright.
PR45
PLASTIC RIVET
Used on Snap-on Track and OMNI Mounting Pads.
Panel Hole Dia. 3.1 – 3.22 mm
Panel Thickness 0.5 – 1.52 mm
Order PR45 Rivets, if required for your application.

PR60
PLASTIC RIVET
Used on Snap-on Track and OMNI Mounting Pads.
Panel Hole Dia. 3.0 – 3.18 mm
Panel Thickness 1.14 – 1.9 mm
Order PR60 Rivets, if required for your application.

TCXX
“T” RETAINING CAPS
“T” Retaining Caps are used at the ends of Mounting Track to hold finger stock in place. Material: Brass. Finish: Bright.

<table>
<thead>
<tr>
<th>“T” CAP</th>
<th>“A”</th>
<th>“B”</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC32</td>
<td>11.4</td>
<td>4.06</td>
</tr>
<tr>
<td>TC37</td>
<td>11.4</td>
<td>4.06</td>
</tr>
<tr>
<td>TC60</td>
<td>17.8</td>
<td>6.6</td>
</tr>
<tr>
<td>TC80</td>
<td>25.4</td>
<td>8.9</td>
</tr>
</tbody>
</table>
ECP 613 OMNI
Performance Range – Single Contact
25% Compression-50% Compression

<table>
<thead>
<tr>
<th>Standard 0.05 Thk.</th>
<th>0.09 kg to 0.18 kg</th>
</tr>
</thead>
</table>
Other finishes are also available.
Material: beryllium copper – .05 mm thick

ECP 614 OMNI
Performance Range – Single Contact
25% Compression-50% Compression

<table>
<thead>
<tr>
<th>Standard 0.08 Thk.</th>
<th>0.02 kg to 0.09 kg</th>
</tr>
</thead>
</table>
Other finishes are also available.
Material: beryllium copper – .08 mm thick

ECP 616 OMNI
Performance Range – Single Contact
25% Compression-50% Compression

<table>
<thead>
<tr>
<th>Standard 0.10 Thk.</th>
<th>0.2 kg to 0.9 kg</th>
</tr>
</thead>
</table>
Other finishes are also available.
Material: beryllium copper – .10 mm thick

ECP 0642
CYLINDRICAL RADIUS
Performance Range
25% Compression-50% Compression

<table>
<thead>
<tr>
<th>Standard 0.13 Thk.</th>
<th>16 kg/m to 103 kg/m</th>
</tr>
</thead>
</table>
*"LC" Style 0.080 Thk. 10 kg/m to 31 kg/m |
Material: beryllium copper – .13 mm thick ("LC" style – .09 mm thick)

ECP 0678A or B
CYLINDRICAL RADIUS
Performance Range
25% Compression-50% Compression

<table>
<thead>
<tr>
<th>Standard 0.13 Thk.</th>
<th>5 kg/m to 24 kg/m</th>
</tr>
</thead>
</table>
Material: beryllium copper – .13 mm thick

Sales 01706 647718
ECP 0682A or B

STRIP GASKETS

Performance Range

<table>
<thead>
<tr>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.13 Thk.</td>
</tr>
</tbody>
</table>

Note: Drawing shown at reduced scale.
Material: beryllium copper – 13 mm thick

ECP 0640A

REVERSE BEND CONTACTS

Performance Range

<table>
<thead>
<tr>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.13 Thk.</td>
</tr>
</tbody>
</table>

Note: Also available in 7.6 metre rolls.
Scores for break off between 12.7 mm increments optional.
Material: beryllium copper – 13 mm thick

ECP 0640B

REVERSE BEND CONTACTS

Performance Range

<table>
<thead>
<tr>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.13 Thk.</td>
</tr>
</tbody>
</table>

Scores for break off between 12.7 mm increments optional.
Material: beryllium copper – 13 mm thick

ECP 0692

REVERSE BEND CONTACTS

Performance Range

<table>
<thead>
<tr>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.13 Thk.</td>
</tr>
</tbody>
</table>

Material: beryllium copper – 13 mm thick

ECP 641

PERPENDICULAR CONTACTS

Performance Range

<table>
<thead>
<tr>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>* to *</td>
</tr>
</tbody>
</table>

Note: Consult factory for performance data.
Clip-on Mounting

ECP 0671A or B
CYLINDRICAL RADIUS
Performance Range
25% Compression-50% Compression
Standard 0.15 Thk. 22 kg/m to 124 kg/m
“LC” Style 0.089 Thk. 10 kg/m to 45 kg/m
Material: beryllium copper – .15 mm thick

ECP 0667A or B or C
CYLINDRICAL RADIUS
Performance Range
25% Compression-50% Compression
Standard 0.13 Thk. 18 kg/m to 138 kg/m
Material: beryllium copper – .13 mm thick

ECP 0668A or B or C
CYLINDRICAL RADIUS
Performance Range
25% Compression-50% Compression
Standard 0.13 Thk. 34 kg/m to 208 kg/m
Material: beryllium copper – .13 mm thick

ECP 669A or B
CYLINDRICAL RADIUS
Performance Range
25% Compression-50% Compression
Standard 0.13 Thk. 21 kg/m to 73 kg/m
“LC” Style 0.08 Thk. 7 kg/m to 33 kg/m
Material: beryllium copper – .13 mm thick (LC style – .08 mm thick)

ECP 0672A or B or C
CYLINDRICAL RADIUS
Performance Range
25% Compression-50% Compression
Standard 0.13 Thk. 18 kg/m to 125 kg/m
Material: beryllium copper – .13 mm thick

ECP 0674
CYLINDRICAL RADIUS
Performance Range
25% Compression-50% Compression
Standard 0.13 Thk. 27 kg/m to N/A
“LC” Style 0.089 Thk. Consult the factory
Material: beryllium copper – .13 mm thick (LC style – .09 mm thick)

MOUNTING FLANGE THICKNESS
0.76 = ECP0671A
1.02 = ECP0671B
1.27 = ECP667A
1.52 = ECP667B

MOUNTING FLANGE THICKNESS
0.76 = ECP667A
1.02 = ECP669A
1.27 = ECP669B
1.52 = ECP669C

Also available for 0.76mm and 1.02mm flange

Also available for 0.09mm thick
ECP 0643
TWISTED CONTACTS
Performance Range
25% Compression-50% Compression
Standard 0.08 Thk. 15 kg/m to 33 kg/m
Material: beryllium copper – .08 mm thick

ECP 0643M
TWISTED CONTACTS
Performance Range
25% Compression-50% Compression
Standard 0.08 Thk. 15 kg/m to 33 kg/m
Material: beryllium copper – .08 mm thick

ECP 0625CO
TWISTED CONTACTS
Performance Range
25% Compression-50% Compression
Standard 0.08 Thk. 48 kg/m to 71 kg/m
Material: beryllium copper – .08 mm thick

ECP 0625COM
TWISTED CONTACTS
Performance Range
25% Compression-50% Compression
Standard 0.08 Thk. 48 kg/m to 71 kg/m
Material: beryllium copper – .08 mm thick

ECP 0652A or B or C
NO-SNAG FINGERS
Performance Range
25% Compression-50% Compression
Standard 0.089 Thk. “LC” Style 0.064 Thk.
“LC” Style 0.064 Thk.
Material: beryllium copper – .09 mm thick (LC style – .06 mm thick)

ECP 0629
SOFT FINGERS
Performance Range
25% Compression-50% Compression
Standard 0.089 Thk. 27 kg/m to 54 kg/m
Material: beryllium copper – .09 mm thick
ECP 0693
REVERSE BEND SPHERICAL
Performance Range
25% Compression-50% Compression
Standard 0.13 Thk. 10 kg/m to 15 kg/m
Material: beryllium copper – .10 mm thick

ECP 0694
REVERSE BEND SPHERICAL
Performance Range
25% Compression-50% Compression
Standard 0.15 Thk. 13 kg/m to 25 kg/m
Material: beryllium copper – .16 mm thick

ECP 0696
REVERSE BEND SPHERICAL
Performance Range
25% Compression-50% Compression
Standard 0.25 Thk. 22 kg/m to 70 kg/m
Material: beryllium copper – .25 mm thick

ECP 0689
REVERSE BEND CONTACTS
Performance Range
25% Compression-50% Compression
Standard 0.10 Thk. 27 kg/m to 61 kg/m
Material: beryllium copper – .10 mm thick

ECP 0683
REVERSE BEND CONTACTS
Performance Range
25% Compression-50% Compression
Standard 0.13 Thk. 27 kg/m to 73 kg/m
Material: beryllium copper – .13 mm thick
ECP 0685
REVERSE BEND CONTACTS

Performance Range

<table>
<thead>
<tr>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.25 Thk.</td>
</tr>
</tbody>
</table>

Material: beryllium copper - 25 mm thick

Mounting

- 3.40 pitch
- 2.31 finger
- UP TO 406 mm LONG
- 0.76

ECP 0690
REVERSE BEND CONTACTS

Performance Range

<table>
<thead>
<tr>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.25 Thk.</td>
</tr>
</tbody>
</table>

Material: beryllium copper - 25 mm thick

Mounting

- 3.68 pitch
- 2.77 finger
- UP TO 406 mm LONG
- 0.76

ECP 0686
REVERSE BEND CONTACTS

Performance Range

<table>
<thead>
<tr>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.25 Thk.</td>
</tr>
<tr>
<td>“LC” Style 0.14 Thk.</td>
</tr>
</tbody>
</table>

Material: beryllium copper - 25 mm thick (LC style: 0.13 mm thick)

Mounting

- 3.40 pitch
- 2.31 finger
- UP TO 406 mm LONG
- 2.99

ECP 0691
REVERSE BEND CONTACTS

Performance Range

<table>
<thead>
<tr>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.15 Thk.</td>
</tr>
</tbody>
</table>

Material: beryllium copper - 15 mm thick

Mounting

- 4.75 pitch
- 3.18 finger
- UP TO 406 mm LONG
- 3.30

ECP 0688
REVERSE BEND CONTACTS

Performance Range

<table>
<thead>
<tr>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.25 Thk.</td>
</tr>
</tbody>
</table>

Material: beryllium copper - 25 mm thick
ECP 0681
CYLINDRICAL RADIUS
Performance Range

<table>
<thead>
<tr>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.10 Thk.</td>
</tr>
<tr>
<td>Material: beryllium copper – 0.10 mm thick</td>
</tr>
</tbody>
</table>

ECP 0680
STRIP GASKETS
Performance Range

<table>
<thead>
<tr>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.13 Thk.</td>
</tr>
<tr>
<td>Note: Drawing shown at reduced scale.</td>
</tr>
<tr>
<td>Material: beryllium copper – 0.13 mm thick</td>
</tr>
</tbody>
</table>

ECP 0624
STRIP GASKETS
Performance Range

<table>
<thead>
<tr>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.18 Thk.</td>
</tr>
<tr>
<td>Note: Drawing shown at reduced scale.</td>
</tr>
<tr>
<td>Material: beryllium copper – 0.18 mm thick</td>
</tr>
</tbody>
</table>

ECP 0676
CYLINDRICAL RADIUS
Elastic performance data available for specific customer gap requirements. Consult factory.

Material: beryllium copper – 0.13 mm thick

ECP 0675
CYLINDRICAL RADIUS
Elastic performance data available for specific customer gap requirements. Consult factory.

Material: beryllium copper – 0.13 mm thick

ECP 0670A or B
CYLINDRICAL RADIUS
Performance Range

<table>
<thead>
<tr>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.13 Thk.</td>
</tr>
<tr>
<td>Material: beryllium copper – 0.13 mm thick</td>
</tr>
</tbody>
</table>
ECP 0673
CYLINDRICAL RADIUS
Performance Range
<table>
<thead>
<tr>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.13 Thk.</td>
</tr>
<tr>
<td>12 kg/m to 55 kg/m</td>
</tr>
<tr>
<td>Material: beryllium copper – .13 mm thick</td>
</tr>
</tbody>
</table>

ECP 0677
CYLINDRICAL RADIUS
Performance Range
<table>
<thead>
<tr>
<th>25% Compression-50% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0.13 Thk.</td>
</tr>
<tr>
<td>25 kg/m to 109 kg/m</td>
</tr>
<tr>
<td>Material: beryllium copper – .08 mm thick</td>
</tr>
</tbody>
</table>

ECP 0660
SPHERICAL RADIUS
Elastic performance data available for specific customer gap requirements. Consult factory.

ECP 0661
SPHERICAL RADIUS
Elastic performance data available for specific customer gap requirements. Consult factory.

ECP 0663
SPHERICAL RADIUS
Elastic performance data available for specific customer gap requirements. Consult factory.

ECP 0664
SPHERICAL RADIUS
Elastic performance data available for specific customer gap requirements. Consult factory.
The contact rings shown here are fabricated from finger stock. These rings can be formed in any diameter containing an integral number of fingers, down to the minimum diameter to which that particular strip can be curled. This limit is spelled out in the tables of specifications under “MIN OD”.

Another specification of importance in the case of contact rings is indicated on the table as dimension “E”, the “recommended mounting dimension”. This figure provides for the proper amount of compression against the “plug” to assure a good contact. It should be added that many variations of these rings are possible. Full information on custom forming is available on request.

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Pitch</th>
<th>Finger</th>
<th>Fingers ± 1</th>
<th>Plug Dia.</th>
<th>Dim. E</th>
<th>Dim. A</th>
<th>Min. O.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-53</td>
<td>1.52</td>
<td>1.02</td>
<td>63</td>
<td>26.98</td>
<td>30.71</td>
<td>3.18</td>
<td>12.70</td>
</tr>
<tr>
<td>93-80</td>
<td>2.36</td>
<td>2.58</td>
<td>41</td>
<td>25.40</td>
<td>31.57</td>
<td>7.93</td>
<td>24.77</td>
</tr>
<tr>
<td>93-79</td>
<td>2.36</td>
<td>1.58</td>
<td>33</td>
<td>19.05</td>
<td>25.22</td>
<td>7.93</td>
<td>24.77</td>
</tr>
<tr>
<td>93-81</td>
<td>2.36</td>
<td>1.58</td>
<td>45</td>
<td>28.58</td>
<td>34.75</td>
<td>7.93</td>
<td>24.77</td>
</tr>
<tr>
<td>127-51</td>
<td>3.23</td>
<td>1.96</td>
<td>16</td>
<td>12.29</td>
<td>16.49</td>
<td>2.36</td>
<td>16.49</td>
</tr>
<tr>
<td>127-52</td>
<td>3.23</td>
<td>1.96</td>
<td>22</td>
<td>18.64</td>
<td>23.01</td>
<td>2.36</td>
<td>16.49</td>
</tr>
<tr>
<td>127-53</td>
<td>3.23</td>
<td>1.96</td>
<td>28</td>
<td>24.99</td>
<td>29.36</td>
<td>2.36</td>
<td>16.49</td>
</tr>
<tr>
<td>127-54</td>
<td>3.23</td>
<td>1.96</td>
<td>31</td>
<td>27.58</td>
<td>31.75</td>
<td>2.36</td>
<td>16.49</td>
</tr>
<tr>
<td>165</td>
<td>4.19</td>
<td>3.56</td>
<td>12</td>
<td>8.89</td>
<td>16.18</td>
<td>6.35</td>
<td>16.18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Pitch</th>
<th>Finger</th>
<th>Fingers ± 1</th>
<th>Plug Dia.</th>
<th>Dim. E</th>
<th>Dim. A</th>
<th>Min. O.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-51</td>
<td>1.91</td>
<td>1.27</td>
<td>12</td>
<td>6.35</td>
<td>7.44</td>
<td>1.58</td>
<td>5.0</td>
</tr>
<tr>
<td>75-52</td>
<td>1.91</td>
<td>1.27</td>
<td>18</td>
<td>9.53</td>
<td>11.05</td>
<td>1.58</td>
<td>5.0</td>
</tr>
<tr>
<td>75-53</td>
<td>1.91</td>
<td>1.27</td>
<td>23</td>
<td>12.70</td>
<td>14.05</td>
<td>1.58</td>
<td>5.0</td>
</tr>
<tr>
<td>75-54</td>
<td>1.91</td>
<td>1.27</td>
<td>28</td>
<td>15.88</td>
<td>17.20</td>
<td>1.58</td>
<td>5.0</td>
</tr>
<tr>
<td>75-55</td>
<td>1.91</td>
<td>1.27</td>
<td>33</td>
<td>19.05</td>
<td>20.22</td>
<td>5.54</td>
<td>5.0</td>
</tr>
<tr>
<td>75-56</td>
<td>1.91</td>
<td>1.27</td>
<td>39</td>
<td>22.23</td>
<td>23.80</td>
<td>5.54</td>
<td>5.0</td>
</tr>
<tr>
<td>75-57</td>
<td>1.91</td>
<td>1.27</td>
<td>44</td>
<td>25.40</td>
<td>26.82</td>
<td>5.54</td>
<td>5.0</td>
</tr>
<tr>
<td>75-58</td>
<td>1.91</td>
<td>1.27</td>
<td>54</td>
<td>31.75</td>
<td>32.92</td>
<td>5.54</td>
<td>5.0</td>
</tr>
<tr>
<td>75-59</td>
<td>1.91</td>
<td>1.27</td>
<td>65</td>
<td>38.10</td>
<td>39.45</td>
<td>5.54</td>
<td>5.0</td>
</tr>
<tr>
<td>75-60</td>
<td>1.91</td>
<td>1.27</td>
<td>96</td>
<td>50.80</td>
<td>52.25</td>
<td>5.54</td>
<td>5.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Pitch</th>
<th>Finger</th>
<th>Fingers ± 1</th>
<th>Plug Dia.</th>
<th>Dim. E</th>
<th>Dim. A</th>
<th>Min. O.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>134-51</td>
<td>3.40</td>
<td>2.31</td>
<td>20</td>
<td>17.04</td>
<td>22.23</td>
<td>5.92</td>
<td>17.78</td>
</tr>
<tr>
<td>134-52</td>
<td>3.40</td>
<td>2.31</td>
<td>23</td>
<td>20.22</td>
<td>25.40</td>
<td>5.92</td>
<td>17.78</td>
</tr>
<tr>
<td>134-53</td>
<td>3.40</td>
<td>2.31</td>
<td>28</td>
<td>25.78</td>
<td>30.94</td>
<td>5.92</td>
<td>17.78</td>
</tr>
<tr>
<td>134-54</td>
<td>3.40</td>
<td>2.31</td>
<td>37</td>
<td>34.93</td>
<td>40.08</td>
<td>5.92</td>
<td>17.78</td>
</tr>
<tr>
<td>134-55</td>
<td>3.40</td>
<td>2.31</td>
<td>20</td>
<td>17.04</td>
<td>22.23</td>
<td>5.92</td>
<td>17.78</td>
</tr>
<tr>
<td>134-56</td>
<td>3.40</td>
<td>2.31</td>
<td>23</td>
<td>20.22</td>
<td>25.40</td>
<td>5.92</td>
<td>17.78</td>
</tr>
<tr>
<td>134-57</td>
<td>3.40</td>
<td>2.31</td>
<td>28</td>
<td>25.78</td>
<td>30.94</td>
<td>5.92</td>
<td>17.78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Pitch</th>
<th>Finger</th>
<th>Fingers ± 1</th>
<th>Plug Dia.</th>
<th>Dim. E</th>
<th>Dim. A</th>
<th>Min. O.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-51</td>
<td>1.52</td>
<td>1.02</td>
<td>21</td>
<td>9.53</td>
<td>10.36</td>
<td>3.18</td>
<td>4.39</td>
</tr>
<tr>
<td>60-52</td>
<td>1.52</td>
<td>1.02</td>
<td>28</td>
<td>12.70</td>
<td>13.56</td>
<td>3.18</td>
<td>4.39</td>
</tr>
</tbody>
</table>

All dimensions in millimetres
Snap into slots
For gaps as small as 0.5mm
Fewer slots improve shielding effectiveness
Easy and secure installation
Ideal for bidirectional applications
100db attenuation
3 standard profiles with 5 slot patterns
Low compression force
High durability
In stock for immediate delivery

MOUNTING SLOT PATTERNS

“V” Series Snap-on gaskets are offered in three standard profiles, each with the five variable finger (or slot) patterns shown below.* Strips may be supplied to any full- or semi-finger increment.

Repeating Finger Pattern (F11)

1.
2.
3.
4.
5.

Repeating Finger Pattern (F12)

Repeating Finger Pattern (F13)

Repeating Finger Pattern (F14)

Repeating Finger Pattern (F15)

Repeating Finger Pattern (F15)

Full Finger
Semi Finger

ECP612VFXx (Shown with pattern F11)

- **Standard** 0.09mm Thick
- **“LC” Style** 0.05mm Thick

- 6.86mm PITCH
- 6.35mm FINGER
- 4.29mm FINGER
- 4.75mm PITCH
- 8.13mm
- 2.79mm
- UP TO 457mm LONG

ECP613VFXx (Shown with pattern F11)

- **Standard** 0.05mm Thick

- 9.40mm
- 3.30mm
- 2.41mm
- 8.13mm
- 6.86mm
- 4.75mm PITCH
- 5.71mm FINGER
- 6.35mm FINGER
- As required based on repeating finger pattern
- UP TO 457mm LONG

ECP614VFXx (Shown with pattern F11)

- **Standard** 0.09mm Thick
- **“LC” Style** 0.05mm Thick

- 7.16mm PITCH
- 6.35mm FINGER
- 5.59mm
- 15.24mm
- 6.59mm
- 3.56mm
- 13.21mm

As required based on repeating finger pattern

ECP613VFXx (Shown with pattern F11)

- **Standard** 0.05mm Thick

- 9.40mm
- 3.30mm
- 2.41mm
- 8.13mm
- 6.86mm
- 4.75mm PITCH
- 5.71mm FINGER
- 6.35mm FINGER
- As required based on repeating finger pattern
- UP TO 457mm LONG

ECP614VFXx (Shown with pattern F11)

- **Standard** 0.09mm Thick
- **“LC” Style** 0.05mm Thick

- 7.16mm PITCH
- 6.35mm FINGER
- 5.59mm
- 15.24mm
- 6.59mm
- 3.56mm
- 13.21mm

As required based on repeating finger pattern
TBA-PS’s new card cage shields are designed to provide contact between the card cage and the I/O slot brackets for optimum EMI/RFI shielding effectiveness.

Produced from 0.076mm stainless steel

19 contact fingers per slot

Contact fingers to static side, facing the card cage portion of the chassis allowing easy insertion of add-in cards without snagging.

Multiple slot configuration. 1-10 slots without tooling

Available as standard items 1-10 slots